Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.874
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(4): 381-384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616116

RESUMO

Bietti's crystalline dystrophy (BCD) is an autosomal recessive chorioretinal degeneration caused by mutations in the CYP4V2 gene. It is characterized by cholesterol accumulation and crystal-like deposits in the retinas. Hydroxypropyl-ß-cyclodextrin (HP-ß-CyD) exerts therapeutic effects against BCD by reducing lysosomal dysfunction and inhibiting cytotoxicity in induced pluripotent stem cell (iPSC)-RPE cells established from patient-derived iPS cells. However, the ocular retention of HP-ß-CyD is low and needs to be improved. Therefore, this study used a viscous agent to develop a sustained-release ophthalmic formulation containing HP-ß-CyD. Our results suggest that HP-ß-CyD-containing xanthan gum has a considerably higher sustained release capacity than other viscous agents, such as methylcellulose and sodium alginate. In addition, the HP-ß-CyD-containing xanthan gum exhibited pseudoplastic behavior. It was less cytotoxic to human retinal pigment epithelial cells compared with HP-ß-CyD alone. Furthermore, the slow release of HP-ß-CyD from xanthan gum caused a sustained decrease in free intracellular cholesterol. These results suggest that xanthan gum is a useful substrate for the sustained release formulation of HP-ß-CyD, and that HP-ß-CyD-containing xanthan gum has potential as an eye drop for BCD treatment.


Assuntos
Colesterol , Distrofias Hereditárias da Córnea , Polissacarídeos Bacterianos , Doenças Retinianas , Humanos , Preparações de Ação Retardada/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia
2.
Biofabrication ; 16(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38447206

RESUMO

Owing to its thermoresponsive and photocrosslinking characteristics, gelatin methacryloyl (GelMA)-based biomaterials have gained widespread usage as a novel and promising bioink for three-dimensional bioprinting and diverse biomedical applications. However, the flow behaviors of GelMA during the sol-gel transition, which are dependent on time and temperature, present significant challenges in printing thick scaffolds while maintaining high printability and cell viability. Moreover, the tunable properties and photocrosslinking capabilities of GelMA underscore its potential for localized drug delivery applications. Previous research has demonstrated the successful incorporation of minocycline (MH) into GelMA scaffolds for therapeutic applications. However, achieving a prolonged and sustained release of concentrated MH remains a challenge, primarily due to its small molecular size. The primary aim of this study is to investigate an optimal extrusion printing method for GelMA bioink in extrusion bioprinting, emphasizing its flow behaviors that are influenced by time and temperature. Additionally, this research seeks to explore the potential of GelMA bioink as a carrier for the sustained release of MH, specifically targeting cellular protection against oxidative stress. The material properties of GelMA were assessed and further optimization of the printing process was conducted considering both printability and cell survival. To achieve sustained drug release within GelMA, the study employed a mechanism using metal ion mediation to facilitate the interaction between MH, dextran sulfate (DS), and magnesium, leading to the formation of nanoparticle complexes (MH-DS). Furthermore, a GelMA-basedin vitromodel was developed in order to investigate the cellular protective properties of MH against oxidative stress. The experimental results revealed that the printability and cell viability of GelMA are significantly influenced by the printing duration, nozzle temperature, and GelMA concentrations. Optimal printing conditions were identified based on a thorough assessment of both printability and cell viability. Scaffolds printed under these optimal conditions exhibited exceptional printability and sustained high cell viability. Notably, it was found that lower GelMA concentrations reduced the initial burst release of MH from the MH-dextran sulfate (MH-DS) complexes, thus favoring more controlled, sustained release profiles. Additionally, MH released under these conditions significantly enhanced fibroblast viability in anin vitromodel simulating oxidative stress.


Assuntos
Bioimpressão , Metacrilatos , Minociclina , Minociclina/farmacologia , Preparações de Ação Retardada/farmacologia , Sulfato de Dextrana , Impressão Tridimensional , Gelatina , Bioimpressão/métodos , Estresse Oxidativo , Hidrogéis , Tecidos Suporte , Engenharia Tecidual/métodos
3.
Biomater Adv ; 159: 213837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522310

RESUMO

Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Humanos , Hidrogéis/uso terapêutico , Poloxâmero/química , Poloxâmero/uso terapêutico , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Heparina/farmacologia , Heparina/química , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico
4.
Int J Biol Macromol ; 265(Pt 1): 130649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453121

RESUMO

Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Humanos , Osteogênese/genética , Proteína Morfogenética Óssea 4/genética , Preparações de Ação Retardada/farmacologia , Diferenciação Celular , Células da Medula Óssea/metabolismo , Células Cultivadas
5.
J Nanobiotechnology ; 22(1): 121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504264

RESUMO

BACKGROUND: Traditional pesticides are poorly water-soluble and suffer from low bioavailability. N-succinyl chitosan (NSCS) is a water-soluble chitosan derivative, has been recently used to encapsulate hydrophobic drugs to improve their bioavailability. However, it remains challenging to synthesize pesticides of a wide variety of water-soluble drugs and to scale up the production in a continuous manner. RESULTS: A synthetic method for preparing water-soluble nanopesticides with a polymer carrier was applied. The bioactive molecule BTL-11 was loaded into hollow NSCS to promote drug delivery, improve solubility and anti-fungal activity. The synthesized nanopesticides had well controlled sizes of 606 nm and the encapsulation rate was 80%. The release kinetics, drug toxicity and drug activity were further evaluated. The inhibitory activity of nanopesticides against Rhizoctonia solani (R. solani) was tested in vivo and in vitro. In vivo against R. solani trials revealed that BTL-11 has excellent control efficiency for cultivated rice leaf and sheath was 79.6 and 76.5%, respectively. By contrast, for BTL-11@NSCS NPs, the anti-fungal ability was strongly released and afforded significant control efficiencies of 85.9 and 81.1%. Those effects were significantly better than that of the agricultural fungicide azoxystrobin (51.5 and 66.5%). The proposed mechanism was validated by successfully predicting the synthesis outcomes. CONCLUSIONS: This study demonstrates that NSCS is a promising biocompatible carrier, which can enhance the efficacy of pesticides, synergistically improve plant disease resistance, protect crop growth, and can be used for the delivery of more insoluble pesticides.


Assuntos
Quitosana , Fungicidas Industriais , Micoses , Humanos , Quitosana/química , Preparações de Ação Retardada/farmacologia , Fungicidas Industriais/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Água/química
6.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481099

RESUMO

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Assuntos
Praguicidas , Praguicidas/farmacologia , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Poligalacturonase , Agricultura , Pectinas
7.
Nanomedicine ; 57: 102739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341009

RESUMO

Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.


Assuntos
Citocinas , Zinco , Animais , Coelhos , Zinco/farmacologia , Fator A de Crescimento do Endotélio Vascular , Preparações de Ação Retardada/farmacologia , Stents
8.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398519

RESUMO

To enhance the bioavailability and antihypertensive effect of the anti-depressant drug citalopram hydrobromide (CTH) we developed a sustained-release transdermal delivery system containing CTH. A transdermal diffusion meter was first used to determine the optimal formulation of the CTH transdermal drug delivery system (TDDS). Then, based on the determined formulation, a sustained-release patch was prepared; its physical characteristics, including quality, stickiness, and appearance, were evaluated, and its pharmacokinetics and irritation to the skin were evaluated by applying it to rabbits and rats. The optimal formulation of the CTH TDDS was 49.2% hydroxypropyl methyl cellulose K100M, 32.8% polyvinylpyrrolidone K30, 16% oleic acid-azone, and 2% polyacrylic acid resin II. The system continuously released an effective dose of CTH for 24 h and significantly enhanced its bioavailability, with a higher area under the curve, good stability, and no skin irritation. The developed CTH TDDS possessed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it has the potential for clinical application as an antidepressant.


Assuntos
Citalopram , Absorção Cutânea , Ratos , Coelhos , Animais , Citalopram/farmacologia , Citalopram/metabolismo , Preparações de Ação Retardada/farmacologia , Administração Cutânea , Pele , Sistemas de Liberação de Medicamentos , Adesivo Transdérmico
9.
AAPS PharmSciTech ; 25(2): 35, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332223

RESUMO

Currently, the marketed ophthalmic preparations of pranoprofen (PF) are mainly eye drops, but due to the special clearance mechanism of the eye and corneal reflex, the contact time between the drug and the focal site is short, most of the drug is lost, and the bioavailability is less than 5%. In the present study, an in situ gel eye drop containing no bacteriostatic agent and sensitive to temperature and ions was designed for delivery of PF. It was demonstrated to meet the criteria for ophthalmic preparations by characterization such as appearance content sterility. Ocular irritation tests showed a favorable safety profile. In vivo ocular retention time experiments showed that the ocular retention time of the pranoprofen gel was 4.41 times longer than that of commercially available drops (Pranopulin®), and the nasal tear excretion of the pranoprofen gel was lower than that of Pranopulin®, which suggests that the drug loss was reduced relative to that of the drops. The efficacy of the pranoprofen gel against tincture of cayenne pepper-induced corneal and conjunctival inflammation was examined using Pranopulin® as a control and in conjunction with inflammation scores, H&E slice results, and levels of IL-1ß, IL-6, and TNF-α. The results showed that pranoprofen gel and Pranololin® had significant efficacy in the treatment of corneal and conjunctival inflammation, and the anti-inflammatory effect of pranoprofen gel was superior to that of Pranololin®. This study provides a new option for the treatment of corneal and conjunctival inflammation.


Assuntos
Benzopiranos , Córnea , Propionatos , Humanos , Preparações de Ação Retardada/farmacologia , Inflamação/tratamento farmacológico , Soluções Oftálmicas
10.
Acta Biomater ; 178: 50-67, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382832

RESUMO

Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-ß1) (OHA-DA-PAM/CMP/TGF-ß1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-ß1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-ß1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-ß1), was developed to facilitate AF regeneration. The sustained release of TGF-ß1 enhanced AF cell recruitment, while both TGF-ß1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-ß1 composite hydrogel for repairing AF defects.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Ratos , Animais , Anel Fibroso/patologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Hidrogéis/química , Adesivos/farmacologia , Preparações de Ação Retardada/farmacologia , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Colágeno/metabolismo
11.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395283

RESUMO

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Microesferas , Quitosana/farmacologia , Ácido Poliglicólico/farmacologia , Ácido Láctico/farmacologia , Glicóis , Preparações de Ação Retardada/farmacologia , Células Cultivadas , Diferenciação Celular , Condrogênese
12.
Int J Biol Macromol ; 262(Pt 2): 130172, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360230

RESUMO

Plant essential oils possess broad-spectral antimicrobial property, but the applications are impeded by their insolubility in water, extreme volatility, and strong irritation. Nanoparticle-stabilized emulsion (Pickering emulsion) gels are colloidal systems with ability to accommodate two immiscible phases in one system. The thick adsorption nanoparticle layers and the cross-linked networks in continuous phase could provide protective barriers for antibacterial oil and achieve on-demand controlled release. An emulsion hydrogel templated from gelatin nanoparticle-stabilized emulsion is one-pot constructed by conducting a tunable cross-linking process between oxidized dextran (Odex) and amikacin in the continuous phase and concomitantly trapping tea tree essential oil (TO) droplets in the three-dimensional network. The resulted emulsion hydrogel presents tunable gelation time, adequate mechanical strength, fascinating injectability, and self-healing capability. It is pH-responsiveness and presents controlled release of amikacin and TO, exhibiting a long-term bacteriostasis of 144 h. The emulsion hydrogel facilitates the outstanding wound healing efficiency in 14 days (95.2 ± 0.8 % of wound closure), accompanied with enhanced collagen deposition and angiogenic activities. The incorporation of TO into emulsion hydrogel system reduced its irritation and improved its biosafety, showing potential application in bacteria inhibition even as implants in vivo.


Assuntos
Amicacina , Nanopartículas , Amicacina/farmacologia , Gelatina , Dextranos , Hidrogéis , Emulsões , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Antibacterianos/farmacologia , Cicatrização
13.
J Nanobiotechnology ; 22(1): 51, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321547

RESUMO

BACKGROUND: Allergic rhinitis (AR) is a prevalent immune-related allergic disease, and corticosteroid nasal sprays serve as the primary treatment for this patient population. However, their short duration of efficacy and frequent administration pose challenges, leading to drug wastage and potential adverse effects. To overcome these limitations, we devised a novel approach to formulate DEX-Gel by incorporating dexamethasone (DEX) into a blend of Pluronic F127, stearic acid (SA), and polyethylene glycol 400 (PEG400) to achieve sustained-release treatment for AR. RESULTS: Following endoscopic injection into the nasal mucosa of AR rats, DEX-Gel exhibited sustained release over a 14-day period. In vivo trials employing various assays, such as flow cytometry (FC), demonstrated that DEX-Gel not only effectively managed allergic symptoms but also significantly downregulated helper T-cells (TH) 2 and TH2-type inflammatory cytokines (e.g., interleukins 4, 5, and 13). Additionally, the TH1/TH2 cell ratio was increased. CONCLUSION: This innovative long-acting anti-inflammatory sustained-release therapy addresses the TH1/TH2 immune imbalance, offering a promising and valuable approach for the treatment of AR and other inflammatory nasal diseases.


Assuntos
Rinite Alérgica , Células Th1 , Humanos , Ratos , Animais , Camundongos , Preparações de Ação Retardada/farmacologia , Células Th2 , Rinite Alérgica/tratamento farmacológico , Citocinas , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Ovalbumina , Camundongos Endogâmicos BALB C
14.
J Biomed Mater Res B Appl Biomater ; 112(1): e35358, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247243

RESUMO

Allogenic demineralized bone matrix (DBM), processed to expose bioactive proteins imbedded by calcium salts, is widely used for bone repair and regeneration as an alternative to the autologous bone graft. However, demineralized bone matrices from tissue banks vary significantly in residual calcium content and osteogenicity for clinical bone regeneration. The present study produced DBM with various residual calcium contents by partial demineralization using ethylenediaminetetraacetic acid disodium (EDTA) and hydrochloric acid. Compositional analysis reveals that, as the percent weight loss of bone materials increases from 0% to 74.9% during demineralization, the residual calcium content of DBM decreases from 24.8% to 0.2% and collagen content increases from 29.7% to 92.6%. Calorimetrical analysis and Fourier transform infrared (FTIR) analysis demonstrated that demineralization to the residual calcium content of <4% enables the complete exposure and/or release of bone collagen fibers and other bioactive molecules. In order to evaluate the relationship between the extent of demineralization and the osteogenicity of DBM, DBM particles were fabricated with the aid of acellular dermal matrix (ADM) microfibers to form flexible foam-like DBM/ADM composites. Proteomic analysis identified various type collagens and bone formation-related bioactive molecules in both ADM and DBM. Using the rat bilateral Φ = 5 mm calvarium defect repair model, the study had shown that the DBM/ADM composite with ~20% DBM residual calcium (e.g., ~40% calcium being removed) maximized the osteogenicity for bone defect repair after 4 and 8 weeks. DBM with ~40% calcium removal had the maximal osteogenicity presumably through the sustained release of bioactive molecules during the process of bone regeneration.


Assuntos
Cálcio , Osteogênese , Animais , Ratos , Cálcio/farmacologia , Preparações de Ação Retardada/farmacologia , Proteômica , Colágeno/farmacologia
15.
Adv Healthc Mater ; 13(10): e2304207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175149

RESUMO

Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.


Assuntos
Quitosana , Exossomos , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Polímeros/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pirróis , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Preparações de Ação Retardada/farmacologia , Peróxido de Hidrogênio/metabolismo , Infarto do Miocárdio/terapia , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Miócitos Cardíacos/metabolismo
16.
Adv Healthc Mater ; 13(9): e2303255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253413

RESUMO

Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.


Assuntos
Anilidas , Condrogênese , Hidrogéis , Ácidos Ftálicos , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Preparações de Ação Retardada/farmacologia , Cartilagem
17.
Int J Biol Macromol ; 262(Pt 1): 129651, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280707

RESUMO

Platelet-rich fibrin (PRF), derived from human blood, rich in wound healing components, has drawbacks in direct injections, such as rapid matrix degradation and growth factor release. Marine polysaccharides, mimicking the human extracellular matrix, show promising potential in tissue engineering. In this study, we impregnated the self-assembled fucoidan/chitosan (FU_CS) hydrogels with PRF obtaining PRF/FU_CS hydrogels. Our objective was to analyze the properties of a hydrogel and the sustained release of growth factors from the hydrogel that incorporates PRF. The results of SEM and BET-BJH demonstrated the relatively porous nature of the FU_CS hydrogels. ELISA data showed that combining FU_CS hydrogel with PRF led to a gradual 7-day sustained release of growth factors (VEGF, EGF, IL-8, PDGF-BB, TGF-ß1), compared to pure PRF. Histology confirmed ELISA data, demonstrating uniform PRF fibrin network distribution within the FU_CS hydrogel matrix. Furthermore, the FU_CS hydrogels revealed excellent cell viability. The results revealed that the PRF/FU_CS hydrogel has the potential to promote wound healing and tissue regeneration. This would be the first step in the search for improved growth factor release.


Assuntos
Quitosana , Fibrina Rica em Plaquetas , Humanos , Fibrina Rica em Plaquetas/metabolismo , Quitosana/metabolismo , Preparações de Ação Retardada/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo
18.
J Mater Chem B ; 12(7): 1864-1874, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293805

RESUMO

Challenges associated with the storage and uncontrolled release of ClO2 gas present significant hurdles to its practical application. Herein, a clever strategy for self-triggering the sustained release of chlorine dioxide (ClO2) gas is proposed by crosslinking carboxymethyl chitosan (CMCS) with Zn2+ to construct a novel CMCS-Zn@NaClO2 gel with eco-friendly, environmental stability, and convenient, long term, and efficient antibacterial activity. The precursor (NaClO2) in the CMCS solution was alkaline and triggered by the acidic Zn(NO3)2·6H2O solution to achieve sustained self-triggering ClO2 release. The ClO2 gas self-release could be sustained on demand at different temperatures for at least 20 days due to the environmental structure stability of the gel. The hydrogels showed an increase in pore size after sustained release. Molecular dynamics simulations showed the spontaneous release of ClO2 gas at room temperature and the contraction of the CMCS agglomeration, which were consistent with the macroscopic behaviour. The gel displayed a long-acting and high antibacterial efficacy, resulting in a bacteria-killing rate of over 99.9% (inhibitory concentrations of 2.5 mg mL-1 against E. coli and 0.16 mg mL-1 against S. aureus). The hydrogels could effectively extend the shelf life of fruits and demonstrated an excellent wide range of antibacterial properties. This work provides a new approach to solving the storage difficulty of ClO2 gas and offers a fresh perspective on the design of materials with convenient self-triggering release by a precursor, as well as the relationship between the material microstructure and sustained-release behaviour.


Assuntos
Anti-Infecciosos , Quitosana , Escherichia coli , Preparações de Ação Retardada/farmacologia , Staphylococcus aureus , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
19.
Int J Biol Macromol ; 261(Pt 1): 129415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224809

RESUMO

The two nanocellulose (nanofibrillated cellulose (NFC) and carboxylated nanofibrillated cellulose (C-NFC)) could interact with lauryl arginine ethyl ester hydrochloride (LAE) through electrostatic bonding. The zeta potential (absolute value) of C-NFC (-27.80 mV) was higher than that of NFC (-10.07 mV). The starch/polyvinyl alcohol active films with controlled release property by utilizing electrostatic interactions between nanocellulose and LAE were prepared and their properties were investigated. For incorporation of the NFC or C-NFC, the cross-section of the films became slightly uneven and some fibrils were observed, the films exhibited an increase in strength, while the film water vapor and oxygen barrier properties decreased. The release of LAE from the films to food simulants (10 % ethanol) decelerated with increasing of NFC or C-NFC. These might be mainly attributed to the enhanced electrostatic interaction between NFC or C-NFC and LAE. It demonstrated that nanocellulose with higher negative charges would exhibit stronger electrostatic interaction with LAE, thus slowing the release of LAE. The film with highest C-NFC content exhibited smallest inhibition zone among LAE-containing films, which was related with its slowest release rate of LAE. It showed a great prospect to develop controlled release active packaging films by utilizing electrostatic interactions between substances.


Assuntos
Anti-Infecciosos , Amido , Preparações de Ação Retardada/farmacologia , Eletricidade Estática , Ésteres , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Celulose
20.
Biomacromolecules ; 25(1): 24-42, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890872

RESUMO

Photodynamic therapy (PDT) is an anticancer therapy with proven efficacy; however, its application is often limited by prolonged skin photosensitivity and solubility issues associated with the phototherapeutic agents. Injectable hydrogels which can effectively provide intratumoral delivery of photosensitizers with sustained release are attracting increased interest for photodynamic cancer therapies. However, most of the hydrogels for PDT applications are based on systems with high complexity, and often, preclinical validation is not provided. Herein, we provide a simple and reliable pH-sensitive hydrogel formulation that presents appropriate rheological properties for intratumoral injection. For this, Temoporfin (m-THPC), which is one of the most potent clinical photosensitizers, was chemically modified to introduce functional groups that act as cross-linkers in the formation of chitosan-based hydrogels. The introduction of -COOH groups resulted in a water-soluble derivative, named PS2, that was the most promising candidate. Although PS2 was not internalized by the target cells, its extracellular activation caused effective damage to the cancer cells, which was likely mediated by lipid peroxidation. The injection of the hydrogel containing PS2 in the tumors was monitored by high-frequency ultrasounds and in vivo fluorescence imaging which confirmed the sustained release of PS2 for at least 72 h. Following local administration, light exposure was conducted one (single irradiation protocol) or three (multiple irradiation protocols) times. The latter delivered the best therapeutic outcomes, which included complete tumor regression and systemic anticancer immune responses. Immunological memory was induced as ∼75% of the mice cured with our strategy rejected a second rechallenge with live cancer cells. Additionally, the failure of PDT to treat immunocompromised mice bearing tumors reinforces the relevance of the host immune system. Finally, our strategy promotes anticancer immune responses that lead to the abscopal protection against distant metastases.


Assuntos
Quitosana , Neoplasias , Fotoquimioterapia , Camundongos , Animais , Hidrogéis/química , Fármacos Fotossensibilizantes/farmacologia , Quitosana/química , Preparações de Ação Retardada/farmacologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...